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A B S T R A C T

Monitoring SARS-CoV-2 in wastewater is a valuable approach to track COVID-19 transmission. Designing
wastewater surveillance (WWS) with representative sampling sites and quantifiable results requires knowledge
of the sewerage system and virus fate and transport. We developed a multi-level WWS system to track COVID-
19 in Atlanta using an adaptive nested sampling strategy. From March 2021 to April 2022, 868 wastewater
samples were collected from influent lines to wastewater treatment facilities and upstream community
manholes. Variations in SARS-CoV-2 concentrations in influent line samples preceded similar variations in
numbers of reported COVID-19 cases in the corresponding catchment areas. Community sites under nested
sampling represented mutually-exclusive catchment areas. Community sites with high SARS-CoV-2 detection
rates in wastewater covered high COVID-19 incidence areas, and adaptive sampling enabled identification
and tracing of COVID-19 hotspots. This study demonstrates how a well-designed WWS provides actionable
information including early warning of surges in cases and identification of disease hotspots.
1. Introduction

Since the early stages of the COVID-19 pandemic, wastewater
surveillance (WWS) has been recognized as a valuable tool that can
complement traditional epidemiological surveillance, to monitor the
spread of COVID-19 and indicate trends in infection at different lev-
els (Peccia et al., 2020; Izquierdo-Lara et al., 2021; Kirby et al., 2021;
Karthikeyan et al., 2021). Ideally, traditional epidemiological surveil-
lance through monitoring the number of people who tested positive
for the SARS-CoV-2, would provide timely and accurate estimation
of COVID-19 incidence. However, many factors like mild or asymp-
tomatic infections, non-specific symptoms, diagnostic test sensitivity,
limited diagnostic test reagents and testing centers, increased use of at-
home test kits, inadequate data collection and overburdened reporting
systems, and public health policies and human behavior could con-
tribute to under-ascertainment, under-reporting, and delayed reporting
of COVID-19 using standard disease surveillance approaches (Peixoto
et al., 2020; Wang et al., 2021). With detection of SARS-CoV-2 RNA in
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wastewater (Ahmed et al., 2020; Medema et al., 2020; Sherchan et al.,
2020) and in stools from COVID-19 patients (Chen et al., 2020; Wu
et al., 2020) during the early COVID-19 pandemic, WWS, previously
utilized to monitor enteric diseases (Hovi et al., 2012; Hellmér et al.,
2014; Andrews et al., 2020; Wang et al., 2020), was proposed as an
inclusive, non-intrusive, inexpensive, sensitive, and scalable strategy to
guide public health response to the COVID-19 pandemic (Daughton,
2020; Larsen and Wigginton, 2020). By September 2022, federal and
local governments, health departments, municipalities, and universities
in at least 70 countries had utilized WWS to monitor COVID-19 (Anon,
2022a). The results of WWS have been used to alert local jurisdic-
tions, guide resource allocation, enable targeted communications, and
forecast clinical resource needs (Kirby et al., 2021).

Most WWS studies have monitored and estimated the COVID-19
incidence at the city level (Peccia et al., 2020; Gonzalez et al., 2020;
Wu et al., 2021) by collecting repeated grab or composite wastewater
samples from downstream sites (e.g., inlets of wastewater treatment
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facilities), that serve a large population. When COVID-19 is spread-
ing, wastewater samples from downstream sites consistently contain
detectable levels of SARS-CoV-2 RNA. To monitor temporal trends
of COVID-19 incidence in the catchment population, quantification
of SARS-CoV-2 RNA concentration in wastewater is required. WWS
has also been widely used at the institution level to monitor disease
transmission and provide early warning of surges in cases or out-
breaks (Karthikeyan et al., 2021; Gibas et al., 2021; Scott et al., 2021;
Wang et al., 2022). Usually, WWS for early warning is considered when
the incidence is low. Frequent sampling is necessary to enable a quick
confirmation of an outbreak and a timely response. The catchments
of sampling sites would preferably be small, which enables targeted
control measures. Ethical concerns (e.g., risk of identifying individuals)
could be greater when monitoring small populations and should be
properly addressed (Hrudey et al., 2021; Wolfe, 2022). However, few
WWS studies have focused on sampling upstream sites at the com-
munity/neighborhood level (Barrios et al., 2021; Haak et al., 2022).
Sampling upstream has the potential to identify disease hotspots within
a larger area, which enables monitoring localized disease transmis-
sion and targeted public health interventions (Haak et al., 2022; Li
et al., 2022). Unlike sampling at wastewater treatment facilities, sample
collection at community sites across the sewer network is more compli-
cated and requires more strategic sampling design in order to optimize
the value of information and guide interpretation of the results (Wang
et al., 2020, 2012; McCall et al., 2017; Larson et al., 2020; Calle et al.,
2021; Domokos et al., 2022).

In this study, we conducted COVID-19 WWS at the city and commu-
nity level in the city of Atlanta. The objectives were to: (1) strategically
design the WWS sampling by describing the sewer network in the city
of Atlanta from a disease monitoring perspective, and developing and
applying an algorithm to select and adapt community sampling sites
across sewer networks; (2) examine the temporal correlation between
WWS results and COVID-19 incidence at the city level; and (3) illus-
trate the capacity of WWS to detect and monitor spatial COVID-19
hotspots at the community level. The knowledge gained in this study
demonstrates the value of strategic sampling design for WWS to provide
actionable information to guide public health response to COVID-19.

2. Methods

2.1. Study area

The current study was conducted in the city of Atlanta, which is
the capital and most populous city (498,715 in 2020) within the state
of Georgia. The City of Atlanta Department of Watershed Manage-
ment (DWM) manages the wastewater system in Atlanta and serves
1.2 million customers within the Atlanta Metropolitan Area. There
are three water reclamation centers (WRCs) within the city limits of
Atlanta, and each WRC has multiple influent lines (Fig. 1a). South River
WRC has a permitted treatment capacity of 48 million gallons per day
(MGD) and provides wastewater treatment for portions of Atlanta, East
Point, Hapeville, College Park, and parts of DeKalb County and Clayton
County. Utoy Creek WRC has a permitted treatment capacity of 40
MGD and provides wastewater treatment for portions of Southwest and
Northwest Atlanta, East Point, and Fulton County. R.M. Clayton is the
largest among the three WRCs, with a permitted treatment capacity of
100 MGD. R.M. Clayton provides wastewater treatment services for the
City of Atlanta, primarily north of Interstate 20, a portion of Sandy
Springs, and Northern DeKalb County. Detailed information on the
WRCs and the sampled influent lines can be found in Supplementary
Table 1. The community sampling sites in this study were selected
mainly in the southern part of the city (south of Interstate 20), where
underserved neighborhoods (e.g., Adamsville, Oakland City, Pittsburgh,
Mechanicsville, and the West End) are located (Fig. 1b). The Georgia
Department of Community Affairs defined underserved areas as areas
with the highest unemployment rate, the lowest per-capita income
2

and the highest percentage of residents whose incomes are below the
poverty level. People living in the underserved areas, when infected by
SARS-CoV-2, are less likely to seek health care and get tested, leading
to higher levels of COVID-19 under-reporting and under-ascertainment
via traditional epidemiological surveillance.

2.2. Sewer network and catchment identification

Once the SARS-CoV-2 viruses in feces enter sewage, they are trans-
ported through the sewerage system consisting of sewers (gravity sew-
ers and force mains), manholes, pumping stations, and wastewater
treatment facilities. A sewerage system can be viewed as a flow network
with manholes (potential sampling sites) as nodes, sewer segments as
edges, and wastewater treatment facilities as sinks which only have
incoming flows. The directions of edges represent the flow direction of
sewage in sewer lines. If pumping stations are not involved, the sewage
flow is only driven by gravity, and the flow direction is determined by
the elevation.

A simplified flow network (e.g., rivers, sewerage system) could
have a line, tree, or net topology. In a line topology network, the
water flows from one upstream point (node) to one downstream point
without merging or splitting (Fig. 2a). The indegree (the number of
edges entering the node) and outdegree (the number edges leaving the
node) both equal 1 for all the nodes in the network. A tree topology
network has multiple upstream branches (edges) that merge as they
flow downstream (Fig. 2b). The indegree could be larger than 1 for
some nodes while the outdegree equals 1. The larger the average
indegree of nodes, the more branches exist within the tree network. In
a net topology network, the flow could split and merge multiple times
as the water travels downstream (Fig. 2c). The indegree and outdegree
both are larger than 1. The larger the indegree and outdegree, the
higher the connectivity within the network. A sewer network has a
hybrid topology integrating line, tree, and net topologies. Usually,
sewage is collected from geographically widespread points and moves
to the final destination of a wastewater treatment facility. In this type
of network, the majority of nodes have outdegrees equal to 1, and the
sewer lines (edges) are merging, developing mainly a tree topology. In
this study, we examined the network statistics (indegree and outdegree)
and network topology of the Atlanta sewer network using geospatial
data for the Atlanta sewerage system (with flow direction), in shapefile
format, provided by the DWM.

For WWS, it is critical to understand the geographic area and
approximately how many people are represented in each wastewa-
ter sample. Based on the sewer network data, we identified all the
upstream points (nodes) and sewer lines (edges) for any potential
sampling site (manhole) in the sewer network using ‘‘lucy’’ (Ness,
2016), a wrapper for the igraph package in R. In the current study, such
an upstream sub-network was defined as the catchment of a sampling
point. The catchment area was estimated as the polygon area covering
this sub-network using the ‘‘concaveman’’ package (Park and Oh, 2012)
in R, and the catchment size was approximated by information on the
number of upstream manholes (including the sampled manhole).

2.3. Sampling design and sample collection

One of the main purposes of this WWS study was to monitor COVID-
19 incidence in the city of Atlanta at a city level. In this study,
the incidence was defined as the number of new COVID-19 cases
reported to the Georgia Department of Public Health (GDPH) over a
specific period of time. During March 2021–April 2022, weekly 1 L
grab samples of wastewater were collected on Monday mornings at
six influent lines of two water reclamation centers (Utoy Creek and
South River), identified by partners at the DWM. Since November
2021, samples were also collected from three additional influent lines
at the R.M. Clayton WRC. The estimated catchment populations for
influent lines are between 5427 and 178,077 (Supplementary Table 1).
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Fig. 1. (a) Estimated catchment areas of nine influent lines sites in the city of Atlanta; The catchment area of Old Winn Dixie, which is very small, may not be visible. (b)
locations for community sampling sites and school sampling sites.
Fig. 2. Indegree and outdegree of different flow network topologies.
The samples from each influent line represent large areas of the city
(Fig. 1a) and were intended to monitor temporal trends of incidence
within each catchment area. To further assess COVID-19 incidence in
smaller geographic areas, samples were collected from upstream com-
munity sites at manholes. Unlike wastewater from the influent lines,
upstream wastewater is less likely to contain SARS-CoV-2 RNA. The
Moore swabs method (Liu et al., 2022), a low-cost composite sampling
approach, was used for community site sampling. During April 2021–
April 2022, Moore swabs were placed weekly in manholes across the
city of Atlanta (Fig. 1b) and retrieved after approximately 24 h. The
details of site identification, sampling requirements, sampling schedule,
and the mobile data collection process are described in Supplementary
Material A.

We developed the Atlanta WWS sampling design for community
sites in three phases. In the pilot phase 1 (April–May 2021), information
related to the sewer network was not available. We conducted con-
venience sampling by selecting community sampling sites (manholes)
in low-income neighborhoods in South Atlanta based on insights from
our partners at DWM. The sampling sites were relocated to new sites
every two weeks to explore sampling in different areas of the city
and examine the variation in detection rates at different community
3

sites. In phase 2 (June–August 2021), we obtained the Atlanta sewer
network shapefile from the DWM, which enabled us to identify the
catchment areas and catchment sizes for all manholes. Based on the
catchment sizes (measured as number of manholes upstream of the
target manhole), we were able to select sampling sites with small
(≤100 manholes), medium (100–500 manholes), and large (> 500
manholes) catchment sizes (Supplementary Table 2). Three community
sites with low detection rates were relocated after four weeks. In phase
3 (September 2021–April 2022), we set up a nested sampling design
by sampling one downstream influent line site along with multiple
upstream branch sites (community manholes), which was defined as a
sampling cluster. Using the Phillip Lee sampling cluster as an example
(Supplementary Figure 1), we identified the main trunk, which was the
longest path in the sewer network with the influent line site as the end
point. Tributary branch sites were defined as the points (nodes) before
merging into the main trunk. The branch sites were independent of each
other (no upstream and downstream relationship), and the initial goal
was to cover as many manholes as possible. Independence between
different branch sites is critical to identify sub-areas with high incidence.
In phase 3, we also applied the adaptive sampling process (Wang et al.,
2020) to relocate community sites within the nested sampling design
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in January 2022. Sites that were rarely positive for SARS-CoV-2 RNA
were replaced with new branch sites, which were proposed following
the descending order of their catchment sizes (largest to smallest).

2.4. Adaptive sampling process

Usually, the independent upstream sampling sites with small catch-
ment areas could not cover the entire influent line site catchment area
that we wanted to monitor. Some high incidence areas, if not covered,
could be undetected by WWS. The adaptive sampling process relocated
a small proportion of sites periodically based on the most recent WWS
results collected. The adaptive sampling process has the following steps:

Initialization Assuming we are designing nested sampling on a sewer
network and 𝑛 sampling sites are planned, one sample site will
be located at a downstream location of the sewer network (end
point of sewer network), and 𝑛−1 branching sites (before enter-
ing the main trunk) will be selected based on their cumulative
weight. Each of the manholes (nodes) was given a weight as
1 at initialization. The cumulative weight for each manhole is
calculated by adding the weights of all the manholes upstream of
the target manhole. The branch sites are selected as independent
(no upstream and downstream relationship between branch sites)
sites with the largest cumulative weights.

eighting Once the sampling sites have been initialized, wastewater
is sampled and tested for a couple of rounds. When the presence
of SARS-CoV-2 RNA (positive) is detected in samples from a
specific site, the weights of manholes within the catchment of
this site increase. The percent that the weight increases depends
on the proportion of positive samples. On the other hand, if no
positive result is detected in samples from a specific site, the
weights of manholes within the catchment of this site decrease.

pdating After the weights of manholes have been adjusted, the
branch sites are re-selected following the process same as initial-
ization but based on updated cumulative weights. The weighting
and updating steps are repeated periodically, and the WWS can
be transformed into a dynamic system that updates itself based
on the most recent results.

Fig. 3 illustrates the application of the adaptive sampling process
n a simulation study. The hypothetical high-risk area is located at the
eft top corner of the sewer network. Here, a high risk of COVID-19
ransmission means a large number of shedders contribute SARS-CoV-

into wastewater. We initialized the sampling with one site at the
nd of the sewer network and five branching sites. The weighting and
pdating steps were conducted after every two rounds of weekly data
ollection. As the update process went on, one or two sampling sites
ere relocated and the weight of the manholes (represented as the

ize of nodes) on the left top corner increased. The source code of
he adaptive sampling process can be found on Github (https://github.
om/YWAN446/COVID-WWS-ATL).

.5. Sample processing and lab testing

Between March–October 2021, three methods were used to con-
entrate SARS-CoV-2 from wastewater samples and extract viral RNA:
1) The Membrane Filtration method, which incorporates the use of

0.45 μm membrane filter, was used to capture SARS-CoV-2 from
astewater grab samples. The Qiagen RNeasy Mini kit (Qiagen, Ger-
any) was used for RNA extraction (Liu et al., 2022). (2) The Skim
ilk method was used to concentrate of SARS-CoV-2 in Moore Swab

amples and the same Qiagen RNeasy Mini kit was used as the Mem-
rane Filtration method (dx.doi.org/10.17504/protocols.io.b2uwqexe).
3) The Manual Nanotrap® Concentration method, which involves

®

4

ERES Nanotrap magnetic hydrogel particles and an enhancement
reagent (Ceres Nanosciences Inc., USA), was used for both grab samples
and Moore Swab samples. The Nanotrap® Magnetic Virus Particles
capture and bind the SARS-CoV-2 viral particles in the wastewater
so that they can be concentrated into a smaller volume. The Qiagen
QIAamp Viral RNA Mini kit was used for RNA extraction (dx.doi.org/
10.17504/protocols.io.b2uzqex6). The transition between these three
methods to our final automated KingFisher Apex system occurred in
October 2021 and the MagMax Viral/Pathogen Nucleic Acid Isolation
kit (Thermo Fisher Scientific, USA) was incorporated in the KingFisher
platform (dx.doi.org/10.17504/protocols.io.b2nkqdcw). Each protocol
mentioned above utilized a sample processing control of Bovine Respi-
ratory Syncytial Virus (BRSV) (MWI Animal Health, USA), which was
spiked directly into wastewater samples prior to sample processing.
After concentration and RNA extraction, SARS-CoV-2 and BRSV were
detected by a singleplex real-time quantitative reverse transcription
polymerase chain reaction (RT-qPCR) (dx.doi.org/10.17504/protocols.
io.b2nkqdcw) between March–November 2021. After December 2021,
a duplex RT-qPCR platform for simultaneous detection of SAS-CoV-2
and BRSV was used between December 2021–April 2022. The details
for the RT-qPCR methods were described by Liu et al. (2022). Briefly,
SARS-CoV-2 RNA was detected via RT-qPCR using the primers/probe
developed by the U.S. CDC and the TaqPathTM qPCR Master Mix
(Thermo Fisher Scientific, USA) was used for RT-qPCR assay. We
used Bland–Altman plot and Cohen’s kappa coefficient to show that
the results from different concentration methods were comparable. In
addition, we conducted a sensitivity analysis using results only from
the KingFisher method, which had similar delayed correlation patterns
compared to using all the results from different concentration methods.
The result was classified as positive when both CT values were present
from the duplicate wells and at least one CT value was below 36. If
both CT values were present and above 36, the sample was considered
as weak positive. When any CT from duplicate wells was absent, the
sample was considered negative. For grab samples, the concentrations
of SARS-CoV-2 RNA in wastewater were estimated from CT values using
standard curves.

2.6. Comparing wastewater surveillance results with reported case data

COVID-19 cases reported to the GDPH from March 2021 through
April 2022 in Georgia were geocoded using Esri’s ArcGIS Streetmap
Premium location information for the North America region by GDPH.
A set of data sources were used with resident address data from the
case report form having the highest priority, followed by electronic
laboratory records, and administrative data from other agencies serving
Georgia’s residents. Coordinates from geocoded resident addresses were
used if they passed a series of quality score measures (e.g., resident
address matched a single address with the highest score). Records not
meeting these quality criteria were excluded. The final data file was
the most complete and precise representation of resident address for
COVID-19 cases in Georgia.

Wastewater results from any sampling site were matched with a
subset of geocoded COVID-19 cases located within the catchment area
of the sampling site. For each influent line site, we examined the
temporal trends of SARS-CoV-2 RNA concentrations in wastewater and
case numbers reported in the catchment area. The concentrations of
SARS-CoV-2 RNA were smoothed over time using the LOESS (locally
estimated scatterplot smoothing) method. The smoothed concentrations
of SARS-CoV-2 RNA and the numbers of daily reported COVID-19 cases
in Fulton County/catchment area were analyzed for correlation and
temporally lagged correlation. For community sites, we examined the
spatial agreement between catchment areas of wastewater sampling
sites with high SARS-CoV-2 detection rates and high COVID-19 inci-
dence areas from the geocoded case data. The wastewater detection
rate of a site was calculated as the percentage of positive samples and

heatmaps of COVID-19 cases were generated using 2D kernel density

https://github.com/YWAN446/COVID-WWS-ATL
https://github.com/YWAN446/COVID-WWS-ATL
https://github.com/YWAN446/COVID-WWS-ATL
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http://dx.doi.org/10.17504/protocols.io.b2uzqex6
http://dx.doi.org/10.17504/protocols.io.b2uzqex6
http://dx.doi.org/10.17504/protocols.io.b2uzqex6
http://dx.doi.org/10.17504/protocols.io.b2nkqdcw
http://dx.doi.org/10.17504/protocols.io.b2qyqdxw
http://dx.doi.org/10.17504/protocols.io.b2qyqdxw
http://dx.doi.org/10.17504/protocols.io.b2qyqdxw
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Fig. 3. Illustration of adaptive sampling process in a simulation study. Each node is a manhole in the sewer network. For the risk area subfigure, the size of nodes represents
he number of shedders that contribute SARS-CoV-2 into wastewater, as an indicator of COVID-19 infection risk. For subfigures update 0–7, manholes shown in black are on the
ongest line in the sewer network, defined as the main trunk (main stream). Manholes shown in yellow are covered by the selected sampling sites, while manholes shown in gray
re not covered. Red manholes represent sites with positive wastewater samples (detection of SARS-CoV-2). Blue manholes represent sites where the wastewater samples were
egative. The sizes of nodes represent the weights of sites. The larger the weight, the higher estimated risk of COVID-19 transmission. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
stimation. Data analysis and data visualization in this study were
onducted using R 4.0.1. The maps in Fig. 1 were generated by ArcGIS.

The GDPH Institutional Review Board determined that this analysis
as exempt from the requirement for IRB review and approval and

nformed consent was not required.

. Results

.1. Atlanta sewer network

We examined the network statistics (indegree and outdegree) and
etwork topology of the Atlanta sewerage system. The indegree and
utdegree of a manhole in the sewer network are the numbers of sewer
ipes going into and going out of the manhole, respectively. The city
f Atlanta sewer network has a total of 52,787 sewer segments and
1,155 manholes. After excluding nodes with zero indegree or zero
utdegree, the average indegree and outdegree were 1.40 and 1.04
espectively indicating it was mainly a tree topology network with some
et topology structures. However, the sewer network topology varied in
5

ifferent areas. In newly developed areas with low population density,
the sewer network includes more line topology components. In densely
populated inner city areas with older sewerage structures, there are
more cross-connections and greater connectivity. Fig. 4 illustrates two
sub-networks in our study: one near the center of the city (upstream
of manhole 23370330601) and the other located more remotely (up-
stream of manhole 23330211001). The average indegree and outdegree
were larger for the sewer network in the city center, which displays a
more connected structure. Figs. 5a and 5b show the spatial distribution
of in- and outdegree in the Atlanta sewer network. The nodes with
large indegree and outdegree are located mainly at the center of the
city where the sewers are mainly combined sewers (Fig. 5c).

3.2. Influent line wastewater surveillance results

A total of 362 samples were collected from nine influent lines
entering three wastewater treatment facilities during March 20, 2021–
April 11, 2022 (Fig. 1a). Fig. 6 shows the concentrations of SARS-CoV-2
RNA in the wastewater samples from influent lines increased between
July and August 2021, matching the temporal trend of reported cases

in Fulton County, Georgia. When the reported cases decreased in
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Fig. 4. Two sewer sub-networks (a) within the center of the city and (b) in the periphery of the city.
Fig. 5. (a) Geographical distribution of manholes with large indegree on the sewer network; (b) Geographical distribution of manholes with large outdegree on the sewer network;
(c) Areas with combined sewers in the city of Atlanta.
October and November 2021, the SARS-CoV-2 RNA concentrations in
wastewater stayed relatively high. In late December, the SARS-CoV-
2 RNA concentration in wastewater and the reported case numbers
surged rapidly and then decreased in January 2022.

Correlation analysis showed that the concentration of SARS-CoV-2
RNA in wastewater and the number of daily reported COVID-19 cases
in Fulton County were moderately correlated (Spearman 𝜌 between
0.54–0.71) except for the South Fulton site (Spearman 𝜌 = 0.34).
We also found strong correlations (Pearson’s r between 0.70–0.98 and
Spearman 𝜌 between 0.67–0.95) between the SARS-CoV-2 RNA con-
centrations in the wastewater samples from those six influent line sites
sampled for the entire study period (Supplementary Figure 2). For most
influent line sites, the correlations between the concentrations of SARS-
CoV-2 RNA in wastewater and the reported cases (in Fulton County or
in the catchment area) 7–12 days later were higher than the correlation
between the concentrations of SARS-CoV-2 RNA in wastewater and
the reported cases at the day of wastewater sampling (Supplementary
Figures 3 and 4).

3.3. Community site wastewater surveillance results

Fig. 7 shows the overall WWS results from community sampling
sites. A total of 506 Moore swab samples were collected from 56
manholes (Fig. 1b). In the pilot phase 1 (April–May 2021), we collected
wastewater samples from 20 community sites, each for a time period
of two weeks. We detected samples positive for SARS-CoV-2 RNA at 7
sites, while the other 13 sites only produced weak positive or negative
6

samples. The detection rates for SARS-CoV-2 RNA at community sites
varied even between manholes in close proximity. In phase 2 with the
targeted sampling (June–August 2021), the frequency of SARS-CoV-2
detection in the wastewater samples from community sites increased
in July–September 2021 along with a surge in number of reported
COVID-19 cases in Fulton County. In phase 3 with the nested sampling
(September 2021–April 2022), samples from some community sites
consistently had detectable SARS-CoV-2 RNA throughout the study
period while other sites were only positive in December 2021, when
the numbers of reported cases surged to an unprecedented high level.
Four community sites (Ruby Harper Blvd, Southside Industrial Park-
way, Village Dr, and Walmart), which had low percentages of positive
wastewater samples, were relocated at the end of December 2021 to
four new sites, which had more positive samples compared to those
sites that were dropped. In March–April 2022, when the incidence
decreased to a relatively low level, some community sites were still
positive for SARS-CoV-2 RNA while their corresponding downstream
influent line samples were negative (Fig. 8, Supplementary Figures 5,
6, and 7).

With the nested sampling design in phase 3, we observed spatial
agreement between SARS-CoV-2 RNA detection in wastewater from a
community site and the number of cases reported within the catchment
area of the same site. Fig. 8 shows WWS results and cases reported side
by side for the Phillip Lee sampling cluster (one downstream influent
line site with multiple upstream community sites) as an example. Catch-
ment areas of community sites with high SARS-CoV-2 detection rates
in the wastewater (i.e., Chatham Ave and Plainville Trail) overlapped
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Fig. 6. Temporal trends of the concentrations of SARS-CoV-2 RNA in wastewater from nine influent line sites and the reported case numbers during March 20, 2021–May 8,
2022. Solid purple symbols represent positive samples and open purple symbols show negative samples at the detection limit. The black line is the LOESS line for concentration
of SARS-CoV-2 RNA, and the gray band represent the 95% confidence interval. The red line is the number of reported cases in Fulton County, Georgia. The yellow line is the
number of reported cases in the catchment area of the influent site. Throughout the study period, no case was reported in the very small catchment area of Old Winn Dixie. The
graph caption shows the Spearman correlation between the smoothed concentrations of SARS-CoV-2 RNA in wastewater and the number of reported cases in Fulton County. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
with areas with high numbers of reported COVID-19 cases. In contrast,
samples from the Walmart site, which has a relatively large catchment
area, were only positive for SARS-CoV-2 RNA twice out of 13 samples.
In this area, few cases were reported during the surveillance period. The
results from other sampling clusters are included in the Supplementary
Figures 5, 6, and 7).

4. Discussion

As new variants emerge, SARS-CoV-2 continues to cause waves of
infection across the globe (Karim and Karim, 2021). After more than
two years of COVID-19 pandemic, adherence to COVID-19 rules and
guidance has declined (Michie et al., 2020; Petherick et al., 2021),
and there are signs of fatigue in performing PCR tests for individual
nasal swabs and reporting daily confirmed COVID-19 case numbers
accumulated among patients, caregivers, laboratories, and health de-
partments. Such pandemic fatigue contributes to increasing and more
heterogeneous underestimation of COVID-19 incidence all over the
world. Meanwhile, it is unrealistic to sustain large scale epidemiolog-
ical surveillance systems based on individual diagnostic testing given
the economic burden especially in countries where the resources are
limited. WWS, as an inexpensive, sensitive, and non-intrusive method,
could provide complementary information about COVID-19 incidence
at different geographic levels and is especially useful for populations
where COVID-19 is under-ascertained and/or under-reported due to
limited access to diagnostic testing or health behavior. With careful
sampling designs, WWS can be utilized to examine temporal trends of
COVID-19 incidence at the city level and to identify spatial COVID-19
hotspots at the community level. Such information differentiated by
geographic level can directly inform and guide public health responses
to COVID-19.
7

4.1. Spatially explicit sampling across sewer networks

Designing a sensitive and actionable WWS system requires a good
understanding of what contributing population or catchment area is
represented in a wastewater sample. With a well-characterized sewer-
age system, the catchment area (and population) can be determined
for any sampling site within the sewer network. SARS-CoV-2 RNA
concentrations in wastewater collected from such a sampling site reflect
ongoing infections in the population who reside in its catchment area.
However, sewerage systems usually develop along with the urbaniza-
tion process. Combined sewers are common in some historical areas,
and sanitary sewers are usually added as a city develops and expands.
In the city of Atlanta, combined sewers are mainly located in the city
center, which is also the most densely populated area of the sewer
network. For WWS, sampling at sites from combined sewers poses
challenges to interpretation of the results. First, because the combined
sewer collects both sewage and stormwater, the concentration of SARS-
CoV-2 RNA in the wastewater can be impacted by extreme variation in
flow rate and velocity (caused by rainfall) and any chemicals in the
stormwater, which may reduce the sensitivity or inhibit the lab assay.
In the city of Atlanta, the Intrenchment, Proctor Creek, and Peachtree
Creek influent line sites catch large proportions of combined sewers.
Second, areas with combined sewers were observed to have many cross-
connections (higher connectivity), which may have been designed to
avoid blockage and overflow. Catchment areas and populations cannot
be precisely determined for sampling sites in such sewer networks.

It is critical that catchments of different sampling sites are discrete
areas so that the sources of human excreta entering the catchment
can be considered independent. Usually, influent lines are separate
and distinct before merging at a wastewater treatment facility. Each
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Fig. 7. SARS-CoV-2 wastewater surveillance results for community sites and reported case numbers in Fulton County between March 20, 2021–April 15, 2022. The high reported
case numbers in April 2022 were caused by a data dump (i.e., delayed reporting), and did not represent a surge in cases during that month. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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line typically represents a large proportion of the city. For community
manhole sites, any upstream and downstream connection creates chal-
lenges interpreting results regardless of whether they are quantified
RNA estimates or presence/absence. For example, when upstream and
downstream sites are both positive for SARS-CoV-2, we cannot deter-
mine whether there are COVID-19 infections located in areas covered
by the downstream site but not by the upstream site. Independent
catchment areas enable a more straightforward approach for linking
WWS results with SARS-CoV-2 infections in specific catchment areas
(and populations). The selection of independent locations within the
network can be achieved with network partitioning methods (Larson
et al., 2020; Calle et al., 2021), and in this study we developed
8

a

a ‘‘main trunk and branch sites’’ method to achieve this goal. Some
imitations are introduced by forcing independence between sites. First,
t is challenging to identify independent sites in a sewer network with
any cross-connections. The sites selected could have extremely large

r extremely small catchment areas. Second, in a tree topology sewer
etwork, a small number of branch sampling sites may only be able
o cover a proportion of the sewer network. A careful selection of
ranch sites (multiple sites as a system) should be located on a tree
opology sanitary sewer network, have independent catchment areas,
nd together capture wastewater inputs from as large an area of interest
s possible.
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Fig. 8. SARS-CoV-2 wastewater surveillance results for community sites and reported COVID-19 case numbers in the catchment area for the Phillip Lee sampling cluster between
September 2021–May 2022. Subfigure (a) shows the catchment areas of each community site nested within the overall catchment of the influent line site (in gray). The black
lines represent the sewer network lines. Subfigure (b) shows the weekly wastewater surveillance results (RT-PCR detection of SARS-CoV-2 RNA). Subfigure (c) shows the heatmap
of reported COVID-19 cases between September 1st 2021–May 8th 2022 within the influent catchment area. Subfigure (d) shows the epidemic curves of COVID-19 within each
community site catchment area and NA represents all the cases in the catchment area of the influent line site that are not in the catchment area of a specific community site. PWT,
PT, BEM, Cha, Wal, and Lar represent Peyton Woods Trail, Plainville Trail, Benjamin E Mays High School, Chatham Ave, Walmart, and Larchwood respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.2. Wastewater surveillance at the city level

At the city level, routine COVID-19 WWS, with one or more samples
per week, could supplement or even replace epidemiological surveil-
lance for obtaining information on the spread of COVID-19 in large
populations (large catchment areas within a city). Translation of SARS-
CoV-2 concentrations in wastewater into numbers of cases requires
much information: virus concentrations in wastewater must be quan-
tified reliably (and consistently); concentrations of human fecal matter
in wastewater must be estimated using markers like pepper mild mottle
virus (PMMoV); fecal shedding of SARS-CoV-2 in infected subjects must
be quantified (fraction of infected subjects who shed the virus fecally,
kinetics of fecal shedding); and information on mobility to establish
locations for infected people detected via wastewater. Even though
predicting the number of COVID-19 cases or SARS-CoV-2 infections
(symptomatic and asymptomatic) from wastewater results is challeng-
ing and involves many factors (Wade et al., 2022), it is reasonable to
assume that the time course of SARS-CoV-2 RNA levels in wastewater
should reflect the time course of numbers of viral shedders in the
population connected to the sewerage system. Similar to previous stud-
ies (Weidhaas et al., 2021; Ai et al., 2021; Feng et al., 2021; Wu et al.,
2022), this study found temporal correlations between SARS-CoV-2
RNA concentrations in wastewater and numbers of daily COVID-19
cases reported. With weekly sample collection, we observed a 7–12
days lead time in wastewater signal trends in influent line samples
compared to trends in reported cases in the catchment areas for these
influent line sites. This finding demonstrates the potential of WWS to
provide early warning of COVID-19 case surges in the city, which could
9

forecast needs for clinical and diagnostic testing resources. However,
there was also some discordance between the trends of the SARS-CoV-2
RNA concentration in wastewater and the number of reported COVID-
19 cases. Many wastewater samples from the South Fulton influent line
were negative for SARS-CoV-2 RNA even when there was a large num-
ber of reported cases in the catchment area. We have been exploring
the reasons for this finding by measuring pH values, suspended solids,
and turbidity of all the wastewater samples from influent lines since
July 2021. Higher pH values (>10) were frequently measured (68%)
in the wastewater samples collected from the South Fulton influent
line compared to pH values (around 7) in the wastewater samples
from other influent lines. High pH may denature the virus and degrade
the viral RNA, and it may also indicate the presence of other chemi-
cals in wastewater that may cause PCR inhibition. We also observed
sustained high SARS-CoV-2 RNA concentrations in some influent line
samples after the reported COVID-19 case numbers declined, which
could be caused by prolonged fecal shedding (Zhang et al., 2021) or
may indicate continuing silent transmission in some communities. The
SARS-CoV-2 RNA concentration in wastewater may be considered to
represent the number of infected people currently shedding the virus
in their feces, rather than COVID-19 incidence. Therefore, concentra-
tions of SARS-CoV-2 RNA in wastewater can be considered a distorted
reflection of the reported numbers of COVID-19 cases, convoluted by
the fecal shedding curve which causes delay and averages over a certain
time period. This distortion weakens the correlation between concen-
trations of SARS-CoV-2 RNA in wastewater and numbers of COVID-19
cases reported. Silent transmission occurs when an asymptomatic case
passes the virus to someone else. As the pandemic continues, there will
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be more people with some level of immunity, who may be infected with
mild or no symptoms. Those infections, which may be not captured
by epidemiological surveillance based on diagnostic testing, are still
contributing to the disease transmission and are shedding SARS-CoV-
2 in their feces. In such a scenario, WWS is valuable to guide public
health response especially in settings where resources are limited or
there is severe under-reporting/under-ascertainment.

4.3. Tracing COVID-19 hotspots in communities

Sampling wastewater from upstream community sites in addition
to sampling from downstream influent sites (i.e., nested sampling) im-
proves the sensitivity of wastewater-based surveillance system. SARS-
CoV-2 RNA signals at downstream sites could be subject to large
dilution, rapid degradation of virus and viral RNA, and substantial loss
of signal while moving through the sewer lines (Wang et al., 2020). In
this study, while the samples from South Fulton influent line site fre-
quently failed to detect SARS-CoV-2 potentially due to high pH values,
wastewater samples from its upstream community sites consistently
tested positive for SARS-CoV-2 RNA. In this type of situation, sampling
only from the downstream influent line site produced false negative
results. And when the disease incidence is low, the concentration of
SARS-CoV-2 RNA could be diluted to a level below the limit of detection
whereas sampling at the upstream sites, that are closer to the shedders,
could be more sensitive (Wang et al., 2020).

With an estimated over 413 million people infected with SARS-CoV-
2 and 4.27 billion people fully vaccinated worldwide (Anon, 2022b),
immunity has gradually increased in the population. However, ac-
ceptance and availability of COVID-19 vaccines are not uniformly
distributed (Hughes et al., 2021) resulting in more heterogeneous and
localized COVID-19 transmission (Andersen et al., 2021). Given these
circumstances, more targeted prevention and control measures are
needed to allocate the resources (testing capacity, vaccines, health
communications, and healthcare resources) to those communities at
risk. Reported COVID-19 cases can be geocoded with the assistance
of other existing data systems (e.g., voting registration, vehicle reg-
istration, medical records etc.) to identify spatial clustering of cases.
However, geocoding all reported cases is not a standard procedure in
the epidemiological surveillance and requires tremendous effort. In this
study, we evaluated the feasibility of using WWS at the community
level to trace disease hotspots in a spatial area. With a nested sampling
design, branch sites that cover high COVID-19 incidence areas tend to
ave high SARS-CoV-2 RNA detection rates. This study demonstrates
ow such spatial coincidence enables WWS to be deployed to locate
nfection clusters.

Community level WWS with a small number of independent sam-
ling sites usually cannot cover the entire geographic area. The adap-
ive sampling method in the current study allows relocation of sites not
etecting SARS-CoV-2 and searching for hotspots in the area. Further-
ore, with immunity waxing and waning in the population, and the
eriodic introduction of new SARS-CoV-2 variants, disease transmission
ill continue to vary both temporally and spatially. For example,
opulations in COVID-19 hotspots during the latest Omicron wave
December 2021–February 2022) may gain some level of immunity and
e less likely to contribute to COVID-19 transmission for several months
fterwards. Then, the COVID-19 hotspots for the next wave of infection
ould move to areas where the population has a low level of immunity.
n adaptive sampling approach can transform WWS into a dynamic
ystem to identify and trace COVID-19 hotspots in communities.

. Conclusions

This study highlights the importance of carefully designed sampling
trategies for developing a sensitive and sustainable WWS. We have
10

eveloped, applied, and validated a novel nested sampling strategy p
with adaptive sampling process, which enables identification and trac-
ing of COVID-19 hotspots. The strategic sampling design described
here is critical for long-term sustainability of WWS for COVID-19 and
other diseases, and provides maximum value of information from a
minimum number of samples. The spatial granularity of this wastewater
surveillance data provides actionable information to guide COVID-19
prevention and control measures at different geographic levels.

Code availability

The codes for performing the data analyses, data visualization,
adaptive sampling process, and simulation study are available at https:
//github.com/YWAN446/COVID-WWS-ATL.
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