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Children Are Exposed to Fecal Contamination via
Multiple Interconnected Pathways: A Network
Model for Exposure Assessment

Yuke Wang ,∗ Christine L. Moe, and Peter F. M. Teunis

In recent decades, quantitative microbial risk assessment (QMRA) has been widely used to
assess exposure to fecal microbes and associated health risks. In this study, a multipathway ex-
posure assessment model was developed to evaluate exposure to fecal microbes for children
under 5 in highly contaminated urban environments. Children had contact with various en-
vironmental compartments. The contamination levels of these compartments were estimated
from fecal indicator counts in the environmental samples. Structured observations of child
behavior (including activities, locations, and time) were used to model behavioral sequences
as a dynamic network. The exposure model combines behavior sequences with environmen-
tal contamination, using additional exposure factors when needed, to estimate the number
of fecal microbes transferred from environmental sources to human oral ingestion. As fecal
exposure in a highly contaminated urban environment consists of contributions from multi-
ple pathways, it is imperative to study their relative importance. The model helps us better
understand the characteristics of the exposure pathways that may be driven by variation in
contamination and by variable behavior, like hygiene and high-risk activities. Importantly,
the model also allows prediction of the quantitative effects of an intervention—the expected
reduction in exposure due to infrastructural or behavioral changes—by means of scenario
studies. Based on experience with this exposure model, we make specific recommendations
for additional studies of child behavior and exposure factors in order to fill critical informa-
tion gaps and improve the model structure and assumptions.

KEY WORDS: Exposure assessment; fecal contamination; infectious disease; multipathway; network
modeling

1. INTRODUCTION

Exposure to fecal contamination has a negative
impact on child health, growth, and development.
A short-term effect of exposure to fecal pathogens
is diarrheal disease, which is a leading cause of
mortality and morbidity in children under 5 in
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low-income countries (World Health Organization,
2009). Long-term exposure to fecal contamination in-
creases the risk of environmental enteric dysfunction,
malnutrition, and stunting (Humphrey, 2009; Jiang,
Tofail, Ma, Haque, Kirkpatrick, Nelson, & Petri,
2017; Mbuya & Humphrey, 2016).

When children live in a highly contaminated en-
vironment, multiple sources contribute to exposure
to fecal microbes simultaneously and dynamically. In
1958, the F-diagram was introduced by Wagner and
Lanoix to explain multiple pathways and barriers for
disease transmission (Wagner & Lanoix, 1958). This
conceptual diagram illustrates how fecal microbes
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“travel” from sources to human oral ingestion, and
how different sanitation and hygiene interventions
influence transmission pathways for enteric disease.

Methods for quantitative microbial risk assess-
ment (QMRA) have become increasingly popular
for assessing exposure to fecal microbes, and predict-
ing the associated health risks (Haas, Rose, & Gerba,
1999) for waterborne exposure (Barker, Amoah, &
Drechsel, 2014; McBride, Stott, Miller, Bambic, &
Wuertz, 2013) in low-income country settings (Labite
et al., 2010; Machdar, van der Steen, Raschid-Sally,
& Lens, 2013). However, many QMRA studies only
assessed a specific pathway that was considered the
riskiest pathway based on prior information or ex-
pert opinions (McBride et al., 2013). Some studies
assessed more than one pathway but assumed in-
dependence between pathways (Barker et al., 2014;
Machdar et al., 2013). The health risks associated
with exposure to a network of pathways that have
multiple connections, as illustrated by the F-diagram,
have not been studied quantitatively.

The present study was designed to build an
agent-based model (An, 2012; Bonabeau, 2002;
Eubank et al., 2004) to assess multiple fecal exposure
pathways and their interactions using a network
structure approach. The model combines levels of
fecal contamination in the environment, behavior
sequences for contact with contaminated environ-
ments, and microbe transfer characteristics. Multiple
pathways may interact by sharing the same vehicle
for transmission of fecal contamination, often the
hands of the subject. The numbers of fecal microbes
on ingested media, food, or mouthed objects (in-
cluding hands) result from a prior history of microbe
transfers, often controlled by the behavior of the ex-
posed subject. For that reason, the model presented
here is based on a quantitative model of child be-
havior (Teunis, Reese, Null, Yakubu, & Moe, 2016).
The present article documents the construction of
a multipathway exposure model, provides details of
the simulations of microbe transfer for all pathways
that were included, and explains the methods used
for estimating parameters from the microbial data
that were collected. An overview of the conceptual
framework and major results has been published
(Wang et al., 2017).

2. MODEL COMPONENTS

The main entry point for exposure to enteric
pathogens is via oral ingestion. Oral exposure can be
through direct swallowing of contaminated matter,

like drinking water or eating food. Exposure may
also result from indirect contact with contaminated
environments, e.g., by mouthing contaminated
hands. An exposure pathway is defined as a link
between a source of fecal contamination and a
destination (a sink), here the mouth of the exposed
subject. Environmental sources may be any con-
taminated food and drink, soil, and contaminated
surfaces, including highly contaminated compart-
ments like open drains or septage. In a contaminated
environment, people usually are exposed to multiple
pathways simultaneously, with hands serving as in-
termediate (vehicle) in many pathways. Contacts are
highly dynamic, and the order in which they occur
can determine their influence on exposure. Suppose
a child touches a dirty floor and then eats food;
his/her hands may be cleaned before or after eating.
In the first case, the risk of exposure is expected
to be lower than in the second case. Therefore, the
behavior model not only estimates the duration or
frequencies of activities, but also the order in which
they occur (Teunis et al., 2016).

The behavior that drives exposure to fecal con-
tamination is variable. The levels of contamina-
tion in, or on, the contacted media are also highly
variable. Concurrent with the behavioral studies, a
comprehensive sampling program of environmental
sources of fecal contamination was conducted in the
same neighborhoods in Accra, Ghana (Robb et al.,
2017). The exposure assessment in this article is
based on analysis of Escherichia coli concentrations
in samples of food, water, and other environmental
compartments collected in the SaniPath study. In ad-
dition to the data used in the behavior and environ-
mental concentration models, a third major source
of information was exposure factors (e.g., amounts
of microbes ingested, or transferred upon contact
with contaminated media). Some of the exposure fac-
tors were based on data reported in the scientific lit-
erature, and not on data collected in the SaniPath
study.

2.1. Competing Hazards Model of Child Behavior

Child behavior was simulated as a sequence of
“states” (Fig. 1), designated as a combination of
any of six activities (playing/sitting, sleeping, hand-
washing, bathing, defecating, and eating) and any of
five compartments where these activities occur (dirt
floor, improved [concrete] floor, off-ground, stagnant
water/trash area, and open drain). The behavior of
any child may then be thought of as traveling on
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Fig. 1. Exposure model structure. Time is denoted as “T.” To fully describe the behavior of a child, one needs to define what behavior
is occurring, and where this happens. State (S) is a combination of behavior (BEH) and compartment (COMP). The competing hazard
model will generate the next time (T) and state (S) until Tn − T0 > 14 hours. Behavior sequence, defined by Teunis et al. (2016), consists
of a sequence of T and a sequence of S. The number of microbes on hands (NH) and the number of microbes ingested (NI) will also be
sequences generated by exposure modules selected based on current duration (difference in time) and state. The hand.fomite module shows
how hand contamination sequence NH and ingestion sequence NI are generated (NHk− > NHk+1, NIk− > NIk+1).

a network, with states as nodes, and transitions
between states as edges, and the rates with which
transitions occur as edge weights. Thus, the behav-
iors of children can be represented in a directed,
weighted network. From this network structure, the
observed behaviors were analyzed with a competing
hazards model, which estimates the rates of transi-
tions as a set of motivations competing for the next
state. The longer a child is observed in any state, the
higher that state is weighted in the survival model.
Transition rates appeared to depend on the present
state, but also on the state directly preceding the

current state. The details of this behavioral model
have been described by Teunis et al. (2016)

With these estimated transition rates, a simu-
lation model was built that allowed the generation
of sequences of behaviors. Each state in these se-
quences is occupied with a random duration, se-
lected from competing hazards that were estimated
from over 500 hours of structured observation data
(Teunis et al., 2016). Thus, a random “day in the life
of a child” is simulated, where any behavior at any
time is completely known. The behavioral parame-
ters (hazard rates) were estimated by neighborhood
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(Alaja, Bukom, Old Fadama, and Shiabu) and age
category (zero to one, one to two, and two to five
years old).

2.2. Mixture Model for Environmental
Contamination

A total of 1,855 environmental samples were col-
lected in four neighborhoods in Accra, Ghana, in-
cluding liquid samples (tap water, household stored
water, drain water, ocean water, flood water, and ir-
rigation water), solid samples (soil, sand, sediment,
vendor food, and uncooked produce), and surface
swabs (concrete floor, off-ground surface, and pub-
lic latrine surface), as potential sources of exposure
for children.

Contamination in environmental samples was
characterized by E. coli as a fecal microbial indicator,
detected by membrane filtration, and resulting in
counted numbers of colony-forming units (CFUs,
in replicate) and corresponding equivalent volumes
for each observation. All samples were tested in
multiple dilutions. Solid samples and surface swabs
were first suspended in standardized volumes of
buffer (Sanipath website, 2018). It was common to
observe considerable variation in counted numbers
among samples of any type collected at different
locations and/or times. Overdispersion was therefore
modeled as a Poisson–gamma mixture (Teunis,
Rutjes, Westrell, & de Roda Husman, 2009). For a
given set of Nr replicate counts k = {k1, k2, . . . kNr}
in equivalent volumes V = {V1, V2, . . . VNr} di-
luted from the same sample, the likelihood is
Poisson

�s(c|k, V) =
Nr∏

i=1

(cVi )ki

ki !
e−cVi (1)

with concentration c and (equivalent) sample vol-
ume V. In case of surface swab or solid samples,
these concentrations are converted to CFU per sur-
face area or per gram, by using equivalent sur-
face area Si /weight Mi instead of volume Vi . As-
suming a gamma-distributed concentration f (c|ρ, λ),
the (marginal) likelihood for a set of Ns samples
{(k1, V1), (k2, V2), . . . , (kNs , VNs )} is:

�(ρ, λ) =
Ns∏

j=1

∫ ∞

c=0
f (c|ρ, λ)�s(c|k j , Vj)dc. (2)

The parameters ρ and λ describe the variation in con-
centration among different samples. These two pa-

C[s,r]

r in 1:replicates

s in 1:samples

k[s,r]

V[s,r]

ρ[tp[s]] λ[hh[s]]

logρ[tp] logλ[hh]

μλ

τλ

μρ

τρ

tp in 1:Ntp hh in 1:Nhh

Fig. 2. Directed acyclic graph (Gilks, Richardson, & Spiegelhal-
ter, 1996) of the model for assessing variation in microbial concen-
trations. Replicate counts k in equivalent volume V of any repli-
cate r = 1, 2, . . . of sample s = 1, 2, . . . are Poisson distributed with
concentration C. That concentration is a random gamma variate
with shape (clustering) parameter ρ and scale parameter λ. ρ is
assumed to depend on sample type (tp), and λ is assumed to de-
pend on household and/or neighborhood (hh). logρ and logλ are
normally distributed with parameters μ and τ .

rameters may vary as well, for instance, by sample
type or by neighborhood. It was assumed that the
shape parameter ρ varied with the type of substrate,
whereas the scale parameter λ changed with location.
Therefore, variation among sample types was mod-
eled as a distribution of ρ, whereas variation among
households and/or neighborhoods was modeled as a
distribution of λ. Fig. 2 shows the structure of this
model and Table I details all parameters and distri-
butions used.

2.3. Exposure Factors

To calculate the numbers of microbes trans-
ferred through any of the contact behaviors with
any environmental contamination additional data are
needed. Questionnaire responses on water use, san-
itation, and hygiene were collected in 800 house-
holds in four neighborhoods in Accra, Ghana.
When possible, exposure factors were estimated
from these survey data. Wherever such data were
not available, the parameters were based on pub-
lished scientific literature or assumptions, as noted
below. This section describes additional modules
used in the exposure model to specify exposure
factors.
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Table I. Variables, Parameters, and Distributions Used in the Model

Variables Parameters
Distributions/

Models Probability Density Function/Formulas Sources

Area of the hand touching the
surface (cm2)

μ = 2.75 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
USEPA (2011)

σ = 0.75

Fraction of the surface of
hands placed in mouth

α = 3.7 Beta f (x) = xα−1(1−x)β−1

B(α,β) Özkaynak et al. (2011);
Zartarian et al. (2006)β = 25

Attachment coefficient from
surfaces to hands

a = 0.01 Triangle f (x) =

⎧⎪⎨
⎪⎩

2(x−a)
(b−a)(c−a) for a ≤ x<c

2(b−x)
(b−a)(b−c) for c ≤ x ≤ b
0 otherwise

Özkaynak et al. (2011)

b = 0.03
c = 0.02

Detachment coefficient from
hands to surfaces

a = 0.5 Triangle f (x) =

⎧⎪⎨
⎪⎩

2(x−a)
(b−a)(c−a) for a ≤ x < c

2(b−x)
(b−a)(b−c) for c ≤ x ≤ b
0 otherwise

Assumption

b = 0.95
c = 0.75

Duration of handwashing
(seconds)

k = 2.5 Gamma plus 10s
(constant value)

f (x) = 1

(k)θk xk−1e−x/θ Assumption

θ = 10
Duration of bathing (seconds) k = 4 Gamma plus 60s

(constant value)
f (x) = 1


(k)θk xk−1e−x/θ Assumption
θ = 60

Log10 fraction of microbes
remaining after
handwashing or bathing
with soap

β0 = 2.18 Linear model with
log(duration)

f (x) = β0 + β1log(x) Montville, Chen, and
Schaffner (2002);
Kampf and Kramer
(2004)

β1 = −1.18

Log10 fraction of microbes
remaining after
handwashing or bathing
without soap

β0 = 0.68 Linear model with
log(duration)

f (x) = β0 + β1log(x) Montville et al. (2002);
Kampf and Kramer
(2004)

β1 = −0.80

Fraction of microbes removed
from hands by hand–mouth
contact

a = 0.01 Triangle f (x) =

⎧⎪⎨
⎪⎩

2(x−a)
(b−a)(c−a) for a ≤ x < c

2(b−x)
(b−a)(b−c) for c ≤ x ≤ b
0 otherwise

Amadi, Nwagu, and
Emenuga (2013)b = 0.40

c = 0.33

Probability of handwashing
with soap

α = 5 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 17

Probability of bathing with
soap

α = 45 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 19

Adherence coefficient of soil
to hand (mg/cm2)

μ = 0.11 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Özkaynak et al. (2011)

σ = 2.0
Adherence coefficient of water

to skin (μL/cm2)
μ = 5.4 Log-normal f (x) = 1

σ x
√

2π
e−(log(x)−μ)2/2σ 2

Gujral, Proctor, Su, and
Fedoruk (2011)σ = 0.5

Frequency of hand–surface
contact (per hour) for
children

k = 1.85 Weibull f (x) =
{

k
λ

( x
λ

)k−1e−(x/λ)k
x ≥ 0

0 x < 0
Freeman et al. (2001);

Assumptionλ = 145

Frequency of indoor
hand–mouth contact (per
hour) for children

k = 0.91 Weibull f (x) =
{

k
λ

( x
λ

)k−1e−(x/λ)k
x ≥ 0

0 x < 0
Xue et al. (2007)

λ = 18.79

Frequency of outdoor
hand–mouth contact (per
hour) for children

k = 0.98 Weibull f (x) =
{

k
λ

( x
λ

)k−1e−(x/λ)k
x ≥ 0

0 x < 0
Xue et al. (2007)

λ = 13.76

Probability of contact with
own feces during defecation
for age group two to five
years

α = 5 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 41

(Continued)
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Table I (Continued)

Variables Parameters
Distributions/

Models Probability Density Function/Formulas Sources

Probability of hand–surface
contact during defecation

α = 24 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 18

Frequency of hand–surface
contact during defecation

a = 1 Uniform f (x) =
{ 1

b−a for x ∈ [a, b]
0 otherwise

Assumption
b = 10

Probability of exclusively
breastfeeding (by age)

P0−1 = 0.339 Constant P =⎧⎨
⎩

0.339 for children 0–1 year old
0.007 for children 1–2 years old
0 for children 2–5 years old

Ghana Statistical Service
(2016)

P1−2 = 0.007
P2−5 = 0

Probability of breastfeeding
given not exclusively
breastfed for children of age
group zero to one year

α = 79 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 46

Probability of breastfeeding
given not exclusively
breastfed for children of age
group one to two years

α = 85 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 114

Probability of breastfeeding
given not exclusively
breastfed for children of age
group two to five years

α = 10 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 90

Probability of eating raw
produce or bought food,
given not breastfed, for
children zero to one year old

α = 31 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 16

Probability of eating raw
produce or bought food,
given not breastfed, for
children one to two years old

α = 72 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 43

Probability of eating raw
produce or bought food,
given not breastfed, for
children two to five years old

α = 74 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 17

Probability of eating food with
hands

α = 254 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 46

Serving weight for raw
produce (g)

k = 2.5 Gamma f (x) = 1

(k)θk xk−1e−x/θ Estimate from structured

observation data and
assumption

θ = 40

Serving weight for prepared
food and bought food (g)

μ = 100 Normal P(x) = 1
σ
√

2π
e−(x−μ)2/2σ 2

Estimate from structured
observation data and
assumption

σ = 15

Probability of using sachet
water as drinking water in
Alajo

α = 154 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 47

Probability of using sachet
water as drinking water in
Bukom

α = 145 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 57

Probability of using sachet
water as drinking water in
Old Fadama

α = 187 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 14

Probability of using sachet
water as drinking water in
Shiabu

α = 151 Beta f (x) = xα−1(1−x)β−1

B(α,β) Estimate from structured
observation dataβ = 49

(Continued)
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Table I (Continued)

Variables Parameters
Distributions/

Models Probability Density Function/Formulas Sources

Daily consumption of tap
water for age group zero to
one year (cup)

μ = 0.371 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Estimate from structured

observation dataσ = 0.683

Daily consumption of tap
water for age group one to
two years (cup)

μ = 0.927 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Estimate from structured

observation dataσ = 0.642

Daily consumption of tap
water for age group two to
five years (cup)

μ = 1.080 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Estimate from structured

observation dataσ = 0.702

Daily consumption of sachet
water for age group zero to
one year (sachet)

μ = 0.040 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Estimate from structured

observation dataσ = 0.631

Daily consumption of sachet
water for age group one to
two years (sachet)

μ = 0.597 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Estimate from structured

observation dataσ = 0.677

Daily consumption of sachet
water for age group two to
five years (sachet)

μ = 1.060 Log-normal f (x) = 1
σ x

√
2π

e−(log(x)−μ)2/2σ 2
Estimate from structured

observation dataσ = 0.478

Duration of behavior
(minutes)

k = 4.48 Weibull f (x) =
{

k
λ

( x
λ

)k−1e−(x/λ)k
x ≥ 0

0 x < 0
Estimate from structured

observation data &
Teunis et al. (2016)λ varies by

age group
and neigh-
borhood

E. coli concentration (CFU/mg
or CFU/mL or CFU/cm2)

k varies by
sample type

Gamma f (x) = 1

(k)θk xk−1e−x/θ Estimate from

environmental sample
dataθ varies by

sample type
& neighbor-

hood

2.3.1. Binary Attributes of Behavior

Thereare many Boolean variables describing
whether behaviors have a certain attribute or not
(see Table I), for example, handwashing with versus
without soap, or eating with hands versus using cut-
lery. In such cases, the probability of either choice
was estimated from structured observation or survey
data, by assuming a binomial likelihood

P(y|θ) =
(

n
y

)
θ y(1 − θ)n−y (3)

and an uninformed uniform prior distribution for
the probability θ ∼ Beta(1, 1), leading to a Beta dis-
tributed posterior

P(θ |y) ∝ θ y(1 − θ)n−y (4)

with parameters θ |y ∼ Beta(y + 1, n − y + 1).

2.3.2. Water Consumption

The variables describing consumption of water,
including tap water and sachet water, were estimated
using the household survey data, where respondents
stated how many cups/sachets of water they con-
sumed daily. A single cup was assumed to measure
237 mL, and a sachet was assumed to contain 500
mL of water (Kwakye-Nuako, Borketey, Mensah-
Attipoe, Asmah, & Ayeh-Kumi, 2007; Stoler, Weeks,
& Otoo, 2013). As water intake may be any positive
real number, the responses were treated as interval-
censored data. If the individual daily water intake is
log-normal with parameters μ and σ , then the likeli-
hood function

�(μ, σ |y) =
n∏

i=1

[
�

(
log(Ui ) − μ

σ

)
− �

(
log(Li ) − μ

σ

)]

(5)
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may be used, where observation i consists of the in-
terval (Li , Ui ), and � is the cumulative distribution
function (CDF) of the normal distribution. Drinking
water consumption was stratified by age groups but
assumed to not vary between neighborhoods.

2.3.3. Transfer of Microbes by Hand Contact

When a hand makes contact with a contaminated
surface, any microbe on the contacted surface may
be transferred to the hand. If the transfer probability
is equal for all microbes, the eventual number trans-
ferred to the hand m is a binomial sample of the total
number present on the contacted surface M.

Alternatively, when a contaminated hand
touches a surface, some of the attached microbes
will be transferred from the hand to the contacted
surface. In this case, the probability of transfer is
again fixed, the number of microbes transferred from
the hand to the surface n is again a binomial sample
of the total number that was present on the hand
contact area N.

Detachment N → N − n
(

N
n

)
pn(1 − p)N−n

Attachment N → N + m
(

M
m

)
qm(1 − q)M−m

N is a proportion of the total number of microbes
on the hands (NH) and depends on the area of hands
touching a contaminated surface. These two events—
attachment and detachment of microbes (or parti-
cles containing microbes)—happen simultaneously,
so that the probability that a number k = N − n + m
remains on the hands is:

P(k) =
N∑

n=0

(
N
n

)
pn(1 − p)N−n

(
M

n − N + k

)

× qn−N+k(1 − q)M−n+N−k, (6)

which can be recursively applied to calculate the dis-
tribution of microbes on hands after touching a sur-
face 1, 2, . . . times. When repeatedly touching the
same surface, the expected numbers of microbes may
be easily calculated using:(

Sn+1

Hn+1

)
=

(
1 − p q

p 1 − q

) (
Sn

Hn

)
. (7)

The expected numbers of microbes on hands H and
on surface S will approach a steady state (Hn ≈
Hn+1, Sn ≈ Sn+1). The number of touching events
needed to reach a steady state depends on the

attachment and detachment coefficients p and q.
As the sum of the coefficients p + q approaches 1,
a steady state is reached in a single event; when
p + q = 0.63, it takes three touching events to arrive
within 5% range of the steady state. As the fractions
p + q observed tend to be high (Julian, Leckie, &
Boehm, 2010; Mackintosh & Hoffman, 1984; Rusin,
Maxwell, & Gerba, 2001), the parameters used in this
study were set to reach a steady state within a few
touching events.

Modifications to the parameters for contact with
fomites, drains, direct contact with (own) feces, and
intake of microbes when mouthing contaminated
hands are described in Section 3.1. Details of param-
eter settings are listed in Table I.

3. MODEL DEVELOPMENT AND
IMPLEMENTATION

The simulation model describes a dynamic net-
work structure (Fig. 1), tracking microbes from dif-
ferent sources in the environment through different
pathways to human ingestion. At the beginning of a
day, an initial state is assumed (i.e., sleeping in bed,
“off-ground”). The behavioral simulation model gen-
erates a next state (behavior and compartment) and
a time when transition to the next state occurs. De-
pending on the state, certain types of contacts may
occur with a specific environmental compartment.
For each type of contact, there are corresponding ex-
posure factors and a level of contamination (i.e., fe-
cal microbe concentration). For example, if the state
is playing/sitting at an open drain, then the linked
contaminant level is the concentration of microbes in
drain water, and the exposure factor is the coefficient
of attachment from drain water to hands. The num-
bers of microbes transferred during any state are sim-
ulated in exposure modules, using the environmental
contamination level, the current contamination level
on hands, and the exposure factors as inputs. There is
an exposure module for any type of contact, defined
by any state in the behavioral simulation model.

After calculation of the numbers of microbes
transferred between current nodes in the network
and updating the numbers ingested, the simulation
moves to the next state with a corresponding du-
ration. Thus, successive updates of the numbers of
microbes on hands and the numbers ingested are
generated at random intervals as determined by the
behavioral simulation model (Fig. 1). The simula-
tion is continued until a defined total duration has
elapsed, usually a daytime period of 14 hours. Then,



2486 Wang, Moe, and Teunis

Table II. Exposure Pathways, Links to Behaviors and to
Environment Type/Sample-Type Combinations for

Neighborhoods: 1 = Alajo, 2 = Bukom, 3 = Old Fadama,
4 = Shiabu

Compartment Behavior Module

Dirt floor Playing/sitting hand.fomites

hand.mouthing

Concrete floor Playing/sitting hand.fomites

hand.mouthing

Off-ground Playing/sitting hand.fomites

hand.mouthing

Stagnant water and
trash area/drain

Playing/sitting hand.drain

– Sleeping hand.mouthing

– Handwashing hand.washing

– Bathing hand.bathing

– Defecating
hand.defecation

hand.fomites

– Eating produce eating

– Eating prepared/bought
food

eating

– Drinking tap water expos.dw

– Drinking sachet water expos.dw

a new sequence is started, representing a new indi-
vidual and generating a different behavior sequence
with its exposure profile until the required popula-
tion size is reached, usually 10,000 individuals.

As the transfers of each individual microbe
within the network are known during the entire sim-
ulation, any single microbe can be traced from its
source to any sink (ingestion or removal from hands
by handwashing or bathing). This allows calculation
of the contribution of any source or even any path-
way (i.e., path through the network) of human ex-
posure. Observations of behavior and microbial con-
tamination are thus combined to trace movement of
microbes that cannot be directly observed.

3.1. Module Development

Seven different modules (submodels) were cre-
ated to calculate numbers of microbes transferred be-
tween sources, vehicles, sinks, and ingestion (a special
sink where exposure occurs). These modules were
applied according to the “state” of the simulated sub-
ject as illustrated in Fig. 1 (compartment and behav-
ior combination; see Table II). The details of all mod-
ule functions are listed below:

hand.fomites and hand.mouthing. Fig. 1
shows how the hand.fomites module and
hand.mouthing calculates numbers of

microbes transferred during playing/sitting
behavior. During playing/sitting behavior,
hand-to-fomite contact and hand-to-mouth
contact occur independently and repeat-
edly. Each contact updates the numbers
of microbes on hands (NH) and numbers
of microbes ingested (NI) with the cor-
responding function. For hand-to-fomite
contact, the numbers of fecal microbes
attached to, and detached from, hands are
both assumed to be binomial (Section 2.3.3).
The area of hands touching the surface
determines the proportion of fecal microbes
on hand and the number of fecal microbes
on the contaminated surfaces are involved
in the binomial process as N and M. For
hand-to-mouth contact, we assume that
only detachment from hands occurs. As
a result, during playing/sitting behavior,
the numbers of microbes on hands may
increase or decrease while the ingestion
accumulates. During sleeping behavior, only
hand.mouthing is applied.

hand.drain. This module quantifies the mi-
crobe transfer from highly contaminated
drain water to hands during the state “play-
ing/sitting at drain.” And the detachment
of microbes from hands was assumed to be
negligible.

hand.defecation. For defecation behavior, all
children may touch their own feces with a
small probability. With such a contact, a high
number of microbes may be attached to the
hands and detachment is likely to be neg-
ligible. Only children in the two- to five-
year-old age group were assumed to have
hand-to-fomite contacts with the current
compartment in the hand.fomites module.

hand.washing/hand.bathing. These modules
simulate reduction in the numbers of mi-
crobes on hands due to washing or bathing.
Detachment is assumed to be a binomial ran-
dom number between 0 and the number of
microbes currently on hands. The detach-
ment coefficient depends on the duration of
handwashing or bathing. Attachment of mi-
crobes from water to hands was assumed to
be negligible.

eating. The eating module calculates the num-
bers of microbes ingested with food, which
depends on food type. For breastfeeding,
there is no ingestion of microbes since breast
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milk is assumed to be free of fecal microbes.
Contamination of the breast skin was not ac-
counted for because it was difficult to obtain
specific data on skin contamination.
If children eat produce that is typically con-
sumed without cooking (e.g., lettuce, toma-
toes, cucumbers), it is assumed that the outer
surface of the raw produce items is touched
first, before contact with the inner (edible)
parts. Thus, handling of the food is simu-
lated (microbe transfer between food and
hands) during eating behavior. Such an or-
der of events tends to contaminate the in-
ner parts, which are assumed to have been
clean before that contact event. If the food
type is “prepared food” or “vended food”
and it is eaten by hands, then the module as-
sumes that a single hand–food contact was
made before ingestion.

drinking. The drinking module determines
how much water children drink during a 14-
hour daytime period, and which type of wa-
ter is chosen (tap water or sachet water).

Fig. 1 shows how, during any hand–surface con-
tact and hand–mouthing contact, the number of
transferred microbes depends on the area of the hand
touching the surface, the fraction of the hand placed
in the mouth, the contamination level on the sur-
faces, the numbers of microbes on the hands, and
the coefficients of attachment and detachment. The
updated numbers of microbes on the hands and the
numbers ingested also depend on additional informa-
tion, including the frequency of touching the surface,
the frequency of mouthing, and the order in which
those contacts occur. Probability distributions were
defined for all these additional factors (Table I).

3.2. Model Implementation

Parameter estimation was implemented using
a Bayesian framework coded in JAGS (v4.1.0)
(Plummer, 2003) using rjags (v4-6) (Plummer, 2013)
within R (v3.2.4) (R Core Team, 2015), with carefully
chosen priors, uninformed where possible (Table I).

Exposure simulations were run in R (v3.2.4) (R
Core Team, 2015). Typically, 14-hour simulations
were simulated for 10,000 subjects, stratified by age
group and neighborhood. The output of the sim-
ulations consisted of numbers of microbes trans-
ferred between any sources and sinks in the model
(Fig. 3).

Model output can be summarized as distri-
butions describing daily exposure from different
pathways, for each neighborhood and age group
(Wang et al., 2017). The outputs can also be viewed
as dynamic transfers within a network structure
(Fig. 3).

3.3. Simplifying Assumptions

In order to keep the model manageable, simpli-
fying assumptions had to be made, especially where
there were knowledge gaps. Key assumptions are
listed below to clearly define the constraints of the
model.

1. All simulated child-days started with the state
“sleeping off-ground,” and the length of a
child-day (daytime period) was exactly 14
hours.

2. The coefficient of detachment was high, and
larger than the coefficient of attachment, so
that repeated touching of a contaminated sur-
face rapidly resulted in stable numbers of
microbes on hands. This is consistent with pub-
lished studies on hand contamination that ex-
amined effects of repeated touching (Gibson,
Rose, Haas, Gerba, & Rusin, 2002; Nicas &
Jones, 2009).

3. The die-off rate of microbes was set to zero,
which means that the number of viable mi-
crobes was not assumed to decrease during the
time they were attached to hands.

4. Only part of a hand has contact with fomites
and enters the mouth during hand mouthing.
It was assumed that all microbes present on
hands after a contact event were instanta-
neously redistributed on the skin, so that their
surface density remained uniform.

5. In case raw produce or fruits were consumed
using hands, it was assumed that the hands
touch the (potentially contaminated) outer
skin of the produce first and then contact the
edible parts, for instance, by peeling off the
skin. The inner parts were assumed to have
been clean before breaking the skin.

6. It was assumed that breast milk was not con-
taminated and that no microbes were indi-
rectly ingested through skin contact during
breastfeeding.

7. No hand mouthing was assumed to occur dur-
ing defecation, but hands may inadvertently
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Fig. 3. Snapshots (along with time, order from figure (a) to figure (l)) of fecal microbe transfer network for a typical child day (two to five
years old, Bukom neighborhood). DF = “direct contact with own feces,” HW = “handwashing.” The weights of edges are proportional to
the log10 number of microbes transferred. The color of nodes represents their role in the network. Red: sources; yellow: vehicles (can be
source and sink); green: sinks (remove contamination); blue: ingestion.
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touch feces (with low probability) or contami-
nated surfaces during defecation.

8. No hand contact with any contaminated sur-
faces was assumed to occur during sleep, but
hand mouthing may occur.

4. RESULTS

4.1. Sources of Randomness

The multipathway exposure assessment model
was applied to data from four neighborhoods in Ac-
cra, Ghana, to assess the exposure to fecal con-
tamination for children under 5 living in those
neighborhoods. Simulated microbe transfers were
generated to quantify exposures from different
sources. As environmental microbe concentration,
length of contact, and transfer coefficients (direc-
tional) are all random variables defined by a distri-
bution, each microbe transfer between two nodes (in-
cluding sources, hands, and sinks) will show random
variation. For example, two events of touching a dirt
floor lead to different numbers of microbes trans-
ferred from soil to the hands. The concentration of
microbes in dirt, the contacted area, and the trans-
fer coefficient are all random variables. Fig. 4 shows
histograms of simulated numbers of microbes trans-
ferred between different nodes for 10,000 simulated
(14-hour) child-days in the Bukom neighborhood.

Fig. 5 shows a simulated time course of the
contributions to exposure from different sources of
fecal contamination, averaged over 100 simulated
days. Food (102.68–1016.15 CFU/day) and open drains
(100.48–108.17 CFU/day) are the sources that provide
the greatest contribution to exposure, but these are
also the most variable sources of exposure to fecal
contamination. Dirt floor (soil) is also a major source
(103.36–105.10 CFU/day), but its contribution is less
variable.

Comparison of exposure by neighborhood and
age is shown in a companion paper (Wang et al.,
2017); see Figs. 3 and 4, and details in Figs. A1–A7
in that paper. Exposure from food and soil occurred
in any simulated child-days, resulting in median total
exposure of 106.34 (95 percentile range: 103.32–1012.87

CFU/child-day) for food and 104.95 (95 percentile
range: 104.44–105.39 CFU/child-day) for soil in Bukom
and two- to five-year-old age group. Exposure via
open drains and direct contact with (own) feces did
not occur on all child-days, and resulted in somewhat
lower exposures: 105.71 (95 percentile range: 100.78–

107.37 CFU/child-day) and 102.95 (95 percentile range:
0–105.06 CFU/child-day), respectively. Tap water,
(concrete) floors, and off-ground surfaces con-
tributed much less to exposure. Different neighbor-
hoods and age groups had similar outcomes, though
exposure was highest in Shiabu (Wang et al., 2017).

4.2. Flows of Microbes

The dynamic nature of exposure to fecal con-
tamination can be seen clearly in the network graphs
of exposure pathways. Fig. 3 shows a series of suc-
cessive snapshots of the flow of microbes in the
network from sources (red) to sinks (green). Food
(yellow) can be both a source of exposure and a sink,
receiving fecal contamination from hands (yellow).
In Fig. 3(a), a child defecated on the dirt floor and
continued to sit and play on the dirt floor. A frac-
tion of the fecal microbes he/she picked up from
the dirt and his/her own feces were ingested. Then,
in Fig. 3(b), the child ate raw produce using his/her
hands, through which some of the fecal microbes
on the hands were transferred to the food and in-
gested. By following these sequences of fecal mi-
crobe transfer, we can trace how microbes moved
from the environment to human ingestion and quan-
tify the numbers transferred. In this network of fe-
cal pathways, the hands play a central role: they are
the hub through which contamination is transferred
to the mouth (blue).

Over a total of 10,000 simulated child-days, the
fraction direct exposure (i.e., not involving prior
hand contact) is very high 0.86–0.99 for any expo-
sure, for all ages and neighborhoods, and 0.69–1.00
if only food is considered. However, this fraction is
highly variable as becomes apparent when calculat-
ing the same fraction for yearly exposure of a sin-
gle child (365 child-days) and averaging over 1,000
children: in zero to one year old for exposure to
any source the mean fraction direct exposure is low,
0.2–0.4 (different neighborhoods), but with a (95%)
range from 0 to 1. The median fraction is small
(0.002–0.20), indicating a strongly skewed distribu-
tion. In older children (one to two years old and two
to five years old), the mean fraction direct exposure is
higher (0.5–0.7) but with the same range of variation
(0–1).

4.3. Model Validation: Hand Contamination

To study whether the model assumptions were
reasonable and model predictions were realistic, we



2490 Wang, Moe, and Teunis

Hand => Mouth, N = 8,777

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Hand => Food, N = 10,384

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Hand => HW, N = 4,345

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Hand => Bath, N = 3,270

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Food => Mouth, N = 12,374

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Food => Hand, N = 10,436

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Soil => Hand, N = 12,143

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Floor => Hand, N = 868 Off–Ground => Hand, N = 912

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Drain => Hand, N = 2,139

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Septage => Hand, N = 1,252

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Tap water => Mouth, N = 151

log10 microbes transferred

D
en

si
ty

0 5 10 15 20

0

25%

50%

Fig. 4. Histograms of numbers of microbes transferred between different nodes in the fecal microbe transfer network for two to five year
olds in the Bukom neighborhood. N represents the total number of a specific type of transfer occurring in 10,000 simulated child-days of 14
hours. offgr = “off-ground surfaces,” DF = “direct contact with own feces,” HW = “handwashing,” Bath=“bathing.”

conducted a validation experiment using hand rinse
data collected during the SaniPath study. A total of
100 hand rinse samples for children under 5 were col-
lected in the four study neighborhoods (Wang et al.,
2017).

Because the simulation model allows us to quan-
titatively track microbes from any source to inges-
tion, the numbers of fecal microbes attached to hands

at any time during a simulated daytime period are
known. For each of 10,000 simulated child-days in
any age group, the numbers of fecal microbes on
hands were sampled at a random time point. Thus, a
cross-sectional hand rinse study could be simulated,
with a distribution of numbers of microbes on hands
in any neighborhood and age group. Note that the
model calculates the numbers of microbes on hands
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Fig. 5. Time course of exposure to E. coli (CFU) by pathway and dominant pathway for 100 simulated days. Bottom graph: time course of
exposure by pathway for 100 simulated days. Top graph: bar chart for total exposure, the color of each bar represents the dominant pathway
for that day. offgr = “off-ground surfaces,” DF = “direct contact with own feces,” sachet = “sachet water.”

from environmental sources (Fig. 3), not from hand
rinse data.

The hand contamination predicted by the model
was then compared to the observed numbers of mi-
crobes in the hand rinse samples from the study
neighborhoods. Fig. 6 shows numbers of fecal mi-
crobes (E. coli) on hands as inferred from hand rinse
samples, to compare with the simulated hand con-
tamination data. The magnitudes of E. coli concen-
tration in the simulated results and observed data
are similar. Because there is an upper limit of de-
tection of membrane filtration, the observed con-
centrations were truncated at 105 CFU per pair of
hands.

5. DISCUSSION

The exposure model presented here is based
on a detailed model of human behavior, capable
of generating sequences of activities in a specific
order. Aside from frequencies of activities or their
duration, the order in which these activities occur
determines their effect on exposure. This becomes
clear when using network statistics to compare
the fitted behaviors to models without preferential
order (Teunis et al., 2016). The simulated behaviors
are highly variable, but through simulation of a
population, statistics (e.g., mean, standard deviation,
or range) of the outcomes may be analyzed. This

model cannot be directly verified by observations.
However, the extent to which some model outputs
compare with measured parameters may be ex-
amined, as illustrated for the hand contamination
estimates.

In studies of microbial risk, exposure assess-
ments commonly account for a single chain of pro-
cesses (or several process chains), using deterministic
(Labite et al., 2010; Machdar et al., 2013) or stochas-
tic methods (Barker et al., 2014; McBride et al.,
2013). In food QMRA, a general framework has
been developed to investigate how microbes prop-
agate on foods (Nauta, 2008), including the com-
plexity due to variable human behavior during food
preparation (Mylius, Nauta, & Havelaar, 2007). The
present study introduces a new, interdisciplinary ap-
proach by integrating multipathway exposure as-
sessments with social science methods (Ettema,
Borgers, & Timmermans, 1995; Leszczyc & Timmer-
mans, 2002) that provide a quantitative model of hu-
man behavior based on observational data. This com-
prehensive exposure model allows tracking of fecal
microbe transfer throughout all modeled compart-
ments, so that the fate of fecal contamination from
any source may be determined. The combined influ-
ence of variable concentrations of microbes in envi-
ronmental sources, variable intake of contaminated
media, and variable exposure behavior causes a
high degree of random variation. Nevertheless, food
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Fig. 6. Histograms of E. coli hand contamination from analyses of hand rinses (observed) and from simulations for children under 5. The
histograms in the left column are from observation. The upper limit of detection (ULOD) is 105 CFU/pair of hands. The histograms in
the right column are from simulation. Three thousand iterations were simulated for each age group and neighborhood, resulting in 9,000
iterations for each neighborhood and 36,000 iterations in total.
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clearly dominated as a source of exposure to fecal
contamination.

The development of the exposure model for the
Sanipath study was a complex, in-depth project that
combined the work of a multidisciplinary research
team with graduate-level training in environmental
microbiology, behavioral research, database building
and management, biostatistics, programming, and
project management. Specific components of this
study (behavioral analyses, microbiological analyses)
provide data that may be valuable for other risk
models and studies. These data will become publicly
available at the conclusion of the project. The source
code of all models can be found on Github (Source
code on Github, 2018). We have used the results and
experience from this study to design a streamlined
exposure assessment tool (Sanipath website, 2018)
that can be used by a wide range of stakeholders
to estimate risk of exposure to fecal contamination
via different environmental pathways and use this
information to guide decisions about investments in
infrastructure (water, sanitation, and drainage) and
agricultural practices.

5.1. Model Mechanisms

The exposure model includes two mechanisms
of oral ingestion: direct and indirect. Direct in-
gestion represents eating contaminated food and
drinking contaminated water, which are described
in the eating and drinking modules. Indirect inges-
tion involves hands as a vehicle that connects con-
taminated fomites with ingestion. Touching fomites
(food, drains, soil, floor, and off-ground surfaces) en-
ables microbes to transfer and attach to the hands,
while hand mouthing leads to oral ingestion. Though
microbes can attach to hands each time fomites are
touched, hands will not accumulate contamination
during repeated touching events because of detach-
ment. Any microbes that attach upon touching may
easily be lost during subsequent touching events or
due to hygiene behavior (hand washing and bathing)
that removes microbes attached to the hands.

5.2. Patterns of Variation in Exposure

The model captured two types of exposure:
event-like (Teunis et al., 2010) exposure (exposure
associated with a relatively rare event), and low-level
background exposure. Event-like exposure usually
originates from a highly contaminated source (open
drain or highly contaminated food) with large vari-

ation in contamination level. However, contact with
such sources is rare, resulting in few exposures.

The low-level background exposure pattern is
associated with frequent contact with contaminated
surfaces (soil, floor, or off-ground surfaces). Another
low-intensity background exposure is associated with
daily consumption of drinking water with low con-
centration of contamination.

In addition to the large variation in environ-
mental contamination levels, other exposure factors
may contribute to the variation of event-like expo-
sure. For the food pathway, breastfeeding behavior,
food choice (raw produce, prepared food, ready-to-
eat food), and food handling (using bare hands or
cutlery) will add to the variation in foodborne ex-
posure. Because of the variation in source concen-
trations and contact frequencies, event-like exposure
can show large differences between days (Fig. 5). In
contrast, the contamination levels on surfaces in the
private domain (i.e., household) plus frequent con-
tacts with those surfaces lead to a stable level of ex-
posure across successive days.

The main sources of variation in numbers of
microbes transferred between sources, vehicles, and
sinks are the variation in environmental contamina-
tion levels and the rapid and frequent changes in
hand contamination during the day.

Chronic exposure to fecal contamination may
lead to long-term adverse health outcomes like
environmental enteric dysfunction and stunting
(Humphrey, 2009; Jiang et al., 2017; Mbuya &
Humphrey, 2016). In intervention studies, it could
be helpful to examine exposure patterns and com-
pare frequent event-like exposures (which may cause
symptomatic infections due to a high dose) with sus-
tained low-level exposures (which may cause fre-
quent, but asymptomatic, intestinal infections). This
approach may help predict the effect of interventions
aimed at avoiding event-like exposures (e.g., cov-
ering open drains) and interventions that decrease
chronic exposure to sustained low-level contamina-
tion (e.g., improved water quality) on developing
long-term adverse health outcomes.

5.3. Dynamic Fecal Microbe Transfer Network

The F-diagram (Wagner & Lanoix, 1958) illus-
trates how multiple pathways determine exposure
to fecal microbes. The exposure model presented
here extends this by describing a dynamic network
of fecal microbe transfer and fate over time (Fig. 3).
Because indirect ingestion is a stepwise process, the
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microbes transferred to hands by a single contact
with fomites may require multiple handwashing
events, touching other surfaces, and mouthing of the
hand to disperse. Attachment and detachment occur
during discrete events when hands are in contact
with surfaces or fluids. As a consequence, a complete
indirect ingestion pathway usually overlaps with
other indirect ingestion pathways, influencing the
fraction ingested from other sources. This complex
interdependence of microbe transfers emphasizes
how the order in which events occur is important.

5.4. Application of the Model to
Inform Interventions

The main goal of this exposure model was to
allow comparisons between exposures to fecal mi-
crobes via different pathways in order to provide
guidance on where to effectively target interven-
tions to achieve maximum reduction in overall ex-
posure to fecal microbes. We would expect reduc-
tions in exposure to result in health benefits, but
that may depend on the magnitude of the reduction
in overall exposure to fecal microbes. By applying
this exposure model, we can predict the reduction in
ingestion of fecal microbes that would result from in-
terventions targeted at a specific pathway or set of
pathways. The preintervention exposure can be com-
pared to the expected postintervention exposure to
determine whether the ingestion of fecal microbes
would be substantially reduced, presumed sufficient
to result in health benefits (Briscoe, 1984).

Interventions may be infrastructure changes,
such as reduction of environmental contamination
(e.g., through the installation of sanitation systems
that safely contain excreta), or preventing access
to sources of contamination (e.g., through covering
open drains). Alternatively, interventions may be be-
havioral, such as adjusting the time spent in differ-
ent contaminated environments, or changing the fre-
quency of event-like behavior (high-risk or hygiene)
by reinforcing specific behaviors (e.g., handwashing
before eating).

Any such intervention may be translated into a
scenario by modifying some of the settings in the ex-
posure model to simulate the effects of the interven-
tion and predict the impact on ingestion of fecal mi-
crobes and possible reduction of enteric infections
and associated adverse health outcomes.

Sensitivity analyses of the environmental and
behavioral variables included in the exposure model
allow identification of critical points (e.g., the dom-

inant pathway, key exposure factors) that are major
factors in controlling daily exposure. Among those
critical factors, some may be control points, i.e., they
can be manipulated to effectively reduce exposure.
Identification of critical control points provides
guidance for designing interventions that may most
efficiently reduce exposure to fecal contamination.

The current model has multiple modules with
hundreds of variables and parameters. In particular,
modification of behavior sequences creates many dif-
ferent scenarios (e.g., enforcing handwashing before
eating) that must be compared. Therefore, adding
a comprehensive sensitivity analysis requires a sub-
stantial amount of text, and cannot be added to the
current article. A separate paper will be dedicated to
combined sensitivity analysis and simulated interven-
tion scenarios.

5.5. Strengths and Limitations

This article describes a quantitative multipath-
way network structure model, which is novel in mi-
crobial exposure assessment. The model allows the
comparison of different exposure pathways by stan-
dardizing the definition of exposure to fecal con-
tamination as ingestion of CFU of E. coli. It also
enables simulation-based evaluation of infrastruc-
ture and behavior interventions. The dynamic fecal
microbe transfer feature in this model extends the
F-diagram by showing how different barriers are dy-
namically modified by behavior patterns.

The choice to stop at exposure and not address
infection and symptomatic illness endpoints was
made at the very conception of the Sanipath project
(Robb et al., 2017). As argued in (more) detail
there, this choice was made with reference to Briscoe
(1984), who argued that (observed) cases may not
reflect the effects of a health intervention due to
saturation of the dose–response relation at high
exposures.

As in any modeling effort, there were several
information gaps that required us to make assump-
tions, some of which were arbitrary. Additional infor-
mation is needed about food consumption patterns,
drinking behavior, and exposure factors like the fre-
quency of touching different surfaces and the fre-
quency of hand mouthing while playing for children
under five years old.

The model aims to estimate human ingestion of
fecal microbes from the environment. The current
study only used E. coli to model enteric pathogens
associated with fecal contamination. However, other
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fecal microbes could be plugged into this model
to conduct exposure assessment. Follow-up studies
could examine other fecal indicators, or possibly hu-
man pathogens, which may have different transfer
properties and environmental persistence.

Finally (and most ambitiously), data collection
could be repeated in a different low-income urban
setting. The present study used data from four neigh-
borhoods with varying income status, geographical
location, and sanitary infrastructure, but was limited
to a single city (Accra, Ghana). Repeating the same
study design in a different city with a different geo-
graphic and cultural conditions could provide valu-
able insight into how much the results of the present
study may be generalized to other cultures and
climates.

6. CONCLUSION

This article describes a dynamic, multipathway
exposure assessment model for children under five
years of age in crowded, highly contaminated ur-
ban environments. Models of varying environmen-
tal concentrations of fecal microbes, child behav-
iors, and a comprehensive set of exposure factors
were combined to simulate microbe transfer in a
network structure from environmental sources to
human ingestion. The results quantify variation in
exposure within a specific fecal-oral pathway and
between pathways. The network structure represen-
tation highlights the importance of hands in trans-
ferring fecal microbes from the environment to the
child’s mouth. The output of the model can demon-
strate the importance of different exposure pathways
and thus help predict potential reductions in expo-
sure by specific intervention scenarios. Further study
of exposure factors and additional data collection are
needed to fill in information gaps and improve model
assumptions.
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